第5部分 (第1/4页)
千顷寒提示您:看后求收藏(67小说网www.67txt.com),接着再看更方便。
内的纸片上写着获得该物品。不少人以为先抓阄和后抓阄可能面临不同的机会。但是,真的是这样吗?
一个博弈论专家的教训
俄罗斯轮盘赌中的胜负纯粹依靠运气。但是在另一场轮盘赌中,一个博弈论专家本可稳操胜券,却因为未曾细想其策略而满盘皆输。
巴里·奈尔伯夫(Barry Nalbuff)是一个博弈论经济学家。他与迪克西特合作的《策略思维》是一本非常著名的博弈论科普之作。在那本书中记录了巴里的一次深刻教训。话说当年巴里为了庆祝大学毕业,参加了剑桥大学的五月舞会。庆祝活动的一部分包括在一个赌场下注。每人都得到相当于20美元的筹码,截至舞会结束时候,收获最多的一位将免费获得下一年度舞会的入场券。到了最后一轮轮盘赌的时候,纯粹是出于一个令人愉快的巧合,巴里手中已经拥有了相当于700美元的筹
【更新慢或者章节错误,点击举报(请详细说明)】
'19'面对不确定性的制胜策略(2)
码,独占鳌头。第二名是一位拥有300美元筹码的英国女子。其他参与者实际上已经被淘汰出局。该女子提出与巴里分享下一年的入场券,但是巴里拒绝了。是的,自己占有绝对的优势,怎么可能满足于得到一般的奖赏呢?
为了理解接下来的策略,有必要交代一下轮盘赌的规则。典型的轮盘赌是轮盘上刻有37个数字,标记为0~36。轮盘赌的输赢取决于轮盘停止转动时小球落在哪一格。假如小球落在0处,就算庄家赢。轮盘赌最可靠的玩法就是赌小球落在偶数还是奇数。这种玩法的赔率是一赔一,比如1美元赌注变成2美元,不过取胜的机会只有18/37(37个格中除了0外只有18个偶数,或18个奇数)。采取这样一种玩法,即使该女子押上全部300美元筹码也不能稳操胜券。因此她被迫选择一种风险更大的玩法,她把全部的筹码押在小球落在3的倍数上。这种玩法的赔率是二赔一(若她赢了,则她的300美元将变成900美元),但取胜的机会只有12/37(37格中除0外有12个数字是3的倍数)。
现在,那名女子已经将她的筹码摆上桌面,表示已经下注,不能反悔。那么巴里应该怎么办呢?
读者也可以先想一想巴里应该怎么办。真实的结果是,巴里将200美元押在偶数上,并且嘀咕他输掉冠军宝座的唯一可能性就是他输并且她赢,而这种可能性发生的几率为1∶5,因此形势对他非常有利。然而,几率为
1∶5的事件也时有发生。在这里,结果是那名女子赢了。
事后,巴里承认做出这种错误的押注方式是因为当时已经凌晨三点,他喝了太多香槟,没有办法保持头脑清醒了。他真正应该采取的策略是模仿那名女子的做法,同样把300美元押在小球落在3的倍数上。为什么呢?因为尽管小球是否落在3的倍数上是不确定的,但若巴里采取与女子同样的押注方式,那么出现的结果只会是要赢一起赢,要输一起输,但无论输赢巴里都会比那名女子多出400美元而获得冠军宝座。相反,如果巴里采取与女子不同的押注方式,则女子赢得赌注而巴里输掉赌注的可能性就是存在的—这正是真实的故事。
这件事情给了巴里一个深刻的教训。保持清醒的头脑来选择最恰当的策略对于在博弈中取胜是至关重要的。不过,在毕业晚会上这样兴奋、疲倦的时刻,保持清醒头脑可能也很不容易。不仅巴里如此,其实那个女子也是在不清醒的状态下偶然取胜的。怎么可以判断出来?很简单,巴里只要采取与那名女子一样的策略,那名女子就必败,只有两人采取不一样的策略时,那名女子才有获胜的可能;既然如此,该女子就不应率先下注,因为率先下注,巴里就可以跟随其下同样的注;她应该等巴里先下注,然后再下与巴里不同的注,这样才更有反败为胜的可能。
巴里的这个故事所蕴涵的道理是深刻的。在现实中,我们常常会发现类似的领先者模仿落后者的例子。比如帆船竞赛,领先者总是试图与落后者保持同一航道,而落后者总是希望走上与领先者不同的航道。因为帆船会受到风速、风向的随机影响,对于不同航道的船,这种随机影响可能有差异,但同一航道则影响往往是一致的。领先者维持与落后者同一航道,就可避免因随机因素影响而失败;而落后者选择与领先者不同的航道,虽不能保证胜利,但可以通过随机因素获得反败为胜的机会。在一个市场中的企业其实又何尝不是如此?先进企业常常会采取大多数企业所采
《无知的博弈:有限信息下的生存智慧》 第5部分(第1/4页),本章未完,点击下一页继续阅读。