阅读足迹 永久书架

第158章 怎麽可能忘记? (第1/5页)

一桶布丁提示您:看后求收藏(67小说网www.67txt.com),接着再看更方便。

怎麽可能忘记?

大洋彼岸,绝大部分地方已经是深夜甚至是凌晨。

但今天annath的突然更新所引l发的讨论同样还在持续着。

好吧,已经不能说是讨论了,可以说是学术界开始地震了。

搞数学的研究者,其他期刊可以不订,但不可能不订四大顶刊。对于四大顶刊的发刊规律自然也很清楚。

annath这种双月刊,几乎就没有在月初前三天发布过,显得有些急不可耐了。

当然这也更让许多人第一时间开始关注今年这一期的论文。

尤其是在一群研究代数几何跟数论的学者中间,乔喻封面论文带来的影响,

甚至可以说是核爆级别的。

原因是乔喻所提出的广义模态公理体系,其实是属于纲领性的数学思想,且是具有高度创造性和前沿性的数学思想,

但同时又跟朗兰兹纲领不一样,乔喻并不是提出一系列的猜想,而是直接着手开始证明这些命题,体现的是很直接的操作性思维。

乔喻不仅提供理论框架,而且积极地致力于证明相关命题。

类似于一条理论研究与验证相结合的路径,从理念提出到定理化的过程无缝衔接。

说实话,通过一种新的公理化系统去拓展经典数学思维的边界,这是每位数学家都希望能做的事情。

比如谈起微积分,人们就会想到牛顿跟莱布尼茨,这两位在数学界的地位自然也是毋庸置疑的。

同理,如果乔喻能够完善他的广义模态公理体系,这套研究方法,大概也会跟微积分一样,成为未来数学生必修的课程。

原因无非就是两个字,好用。

如果不考虑其抽象性,如果乔喻能够丰满这套公理体系,无疑能让许多目前看来诸多棘手的问题,变得更为简单。

这其中的关键就是工具库的扩大化。

很多人不太理解数学操作中工具的含义,其实说白了,就是数学家在论文中用严谨的逻辑所构造的一个个定理。

比如微积分丶傅立叶变换丶拉普拉斯变换,复变函数,变分法丶筛法丶群论丶微分几何丶辛几何丶马尔科夫链等等-——·

目前数学发展的情况是,这些数学工具都只能在特定的领域发挥作用。

但数学家们又相信这一个个数学分支是有深层次联系的,至于这种联系以何种方式体现,大家都还没发现。

然后就有了代数几何,无非就是将代数方程与几何曲线联系起来。

还有了数学物理,辛几何被用于研究哈密顿动力学,其结构同样源于数学上的对称性与几何变换。

乃至之后的朗兰兹纲领,这一纲领最本质的目的就是将代数丶数论和表示论进行统一,通过建立更深层的数学工具框架,进行跨领域的联系。

其最成功的部分在于提供了一种宏观视角,让数学家去分析这些数学工具背后的共同规律。

这也让许多人相信,并做出判断,不同数学工具的视角可能在未来被抽象成更广义的公理体系。

说白了,乔喻现在就在做这样的工作,可以将之视为统一数学逻辑工具的全新尝试。

当然一种尝试可能并不会掀起什麽波浪。数学家的各种尝试多去了。真正能做出影响力的屈指可数。

但数学界没有秘密,这两篇论文豪华的审稿人阵容,早就已经传了出去。

毕竟对于这些大佬来说,审核这样一篇他们集体认为逻辑很严谨的数学论文,并不是一件需要保密的事情。

不希望曝光的往往是那种,明知道这篇文章就是一坨翔,但因为人情关系,

人家求上门,不得不捏着鼻子给了通过的那种论文。

所以杜根·洛特帮助皮埃尔·德里尼杜撰的那句评价,也随之流传了出去。

「这将是本世纪最伟大的里程碑之作,很可能没有之一!」

论文发布后,甚至有好友私信了皮埃尔·德里尼这句评价是不是真的,皮埃尔·德里尼毫不犹豫的承认了。

甚至还说安德鲁·怀尔斯觉得他说的没错

是的,皮埃尔·德里尼现在觉得洛特·杜根就是他的完美嘴替。

好吧,如果没有乔喻今天在华夏数学学会上做报告的那篇论文,他或许还会用开玩笑的语气,把洛特·杜根给推出来。

但现在没那个必要了。

虽然乔喻今天凌晨才在数学学会上

《巅峰学霸最新章节》 第158章 怎麽可能忘记?(第1/5页),本章未完,点击下一页继续阅读。